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Finite Triangulation

• Tiling of any two-dimensional surface with triangles
• Pillow triangulation of a sphere
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Finite Triangulation

• Approximation of smooth surface improves as number of
triangles increases

Source: http://ieeexplore.ieee.org/ieee_pilot/articles/05/ttg2009050719/assets/img/article_1/fig_3/large.gif
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Defect Angle (εi)

• A measure of the angle "missing" from a vertex of the
triangulation

εi = 2π −
∑

(j,k)|(i,j,k)∈F

(αjik)
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Defect Angle

Demonstration of angular deficit and surplus

Source: http://royalsocietypublishing.org/content/ro yprsa/469/2153/20120631/F1.large.jpg
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Defect Angle

Defect angles in a regular tetrahedron. The defect angle at each vertex
is π because there are 3 angles measuring π

3 .
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What is Γ?

• A function on a finite triangulation, determined by A. Ko
and M. Roček, equal to:

Γ =
1

12π

∑
∠ijk

 αijk∫
π
2

(
y− π

3

)
cot y dy

+
∑
〈ij〉

2kijπ ln
(
`ij

`0

)
Constants kij are defined such that∑

j|〈ij〉∈E

kij = 1− ni

6

where ni is the number of vertices adjacent to i.
Defined so that if we change each edge `ij at i by αi`ij, then Γ will
change proportionally to αiεi.
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Rescaling a vertex

The effect of rescaling 〈1, 2〉 on the triangulation. Only two of the six
triangles are affected, showing the locality of the rescaling and Γ.
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Phi Quantities (Φi)

• Consider a triangulation where the edge lengths are given
by

`ij = `0
ije

Φi+Φj

We can rescale the triangulation’s edge lengths by adding
constants to Φi and Φj.
∂Γ
∂Φi

is proportional to εi.
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Project objective

• The principal problem we are investigating:
What relations can we find between the properties of discrete
triangulations and those of smooth surfaces?

• An interesting question we explored in passing:
What is the Taylor series of Γ, and what information about a
triangulation is conveyed in its coefficients?
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Methodology and Procedure

• Methodology
Multivariate calculus

• Procedure
Second-order Taylor series with respect to the Φ values
Laplace operator and Laplace matrix
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Laplace operator (∇2)

• The energy functional is given by an integral involving the
Laplace operator∇2Ψ on an arbitrary function Ψ:

−
∫ ∫

D

Ψ∇2Ψ dx dy

• Integrating by parts we can rewrite this as:∫ ∫
D

(∇Ψ · ∇Ψ) dx dy
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Laplacian matrix (L)

• Discrete analogue of the Laplace operator
• Acts on a matrix Φ by matrix multiplication (L · Φ)
• Xianfeng Gu et al. define a modified Laplace matrix:

Lij =


−wij if i 6= j

∑
k

wik if i = j
,wij =


cotαikj

2 if [vi, vj] ∈ ∂M

∑
k|(i,j,k)∈F

cotαikj

2 if [vi, vj] 6∈ ∂M

• The wij terms are named cotangent edge weights.
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Cotangent edge weights

Interior edge 〈ij〉 has

wij =
1
2

(cotαik1j + cotαik2j)

so Lij = − 1
2 (cotαik1j + cotαik2j)

Boundary edge 〈jk1〉 has

wjk1 =
1
2

cotαjik1

so Ljk1 = − 1
2 cotαjik1

Lk1k1 = wik1 + wjk1

= 1
2 (cotαjik1 + cotαijk1)

As k1 and k2 are not adjacent,
Lk1k2 = 0.
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Calculation of the Taylor series

• We need to compute the first and second derivatives of Γ
with respect to the Φ quantities.

By construction, the first derivative of Γ with respect to Φi is:

∂Γ

∂Φi
= εi
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Calculation of the Taylor series

• There are two cases of second derivatives of Γ with respect
to Φ :

"On-diagonal": the second derivatives of the form

∂2Γ

∂Φ2
i

"Off-diagonal": the second derivatives of the form

∂2Γ

∂Φi · ∂Φj

• We use the defect angle to compute these derivatives.
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Calculation of the Taylor series

• We start by differentiating an angle of a triangle, αjik.
• We use the Law of Cosines:

cosαjik =
`2

ije
2Φi+2Φj + `2

ike
2Φi+2Φj − `2

jke
2Φj+2Φk

2`ijeΦi+Φj`ikeΦi+Φk

• By differentiating both sides with respect to a Φ value, we
can isolate the derivative of the angle.

Author, Brandon Rafal Epstein The Defect Angle



Calculation of the Taylor series

• To recapitulate, we have the following derivatives:

∂Γ

∂Φi
= εi

∂2Γ

∂Φ2
i

= −
∑

i|(i,j,k)∈F

cotαikj + cotαijk

∂2Γ

∂Φi · ∂Φj
= −

∑
i,j|(i,j,k)∈F

cotαikj

• Substituting these into the general formula of a
multivariable Taylor series, we finish the derivation.
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Taylor series

• The Taylor series of Γ to the second order is calculated to
be:

Γ = Γ0 +
1

12π

(∑
i∈V

(εiΦi)

+
∑
i∈V

 ∑
j,k|(i,j,k)∈F

(
cotαijk + cotαikj

2

)
Φ2

i


+
∑
〈ij〉∈E

 ∑
k|(i,j,k)∈F

(− cotαikj) ΦiΦj

)
• This series had not been calculated previously.
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Laplace operator

• M. Roček and R. M. Williams calculated the previous
integral ∫ ∫

D

(∇Φ · ∇Φ) dx dy

• They determined that this is equal to:

1
2

((
cotα2 + cotα3

2

)
Φ2

1 +

(
cotα1 + cotα3

2

)
Φ2

2

+

(
cotα1 + cotα2

2

)
Φ2

3

+ (− cotα3) Φ1Φ2 + (− cotα2) Φ1Φ3 + (− cotα1) Φ2Φ3

)
which is proportional to the second-order terms of the
Taylor series of Γ for a pillow triangulation by a factor of
6π.
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Results

• The three quantities we have
discussed are all equal!

The coefficients of second-order
terms of the Taylor series of Γ
The entries of the Laplace matrix
The coefficients of the expansion of
the energy functional
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Further Research

• In general, further research topics are those which
discretize other continuous concepts.

Cauchy-Riemann Equation - useful tool in the continuous case;
holomorphic criteria for complex functions. Holomorphic
functions give solutions to the Liouville equation.
Liouville theory-concerns solutions to the Liouville equation in
the continuous case.
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Conclusion

• We determine the Taylor series expansion of Γ with respect
to Φ quantities.
• We verify that the Taylor series expansion, the gradient

integral, and the Laplace matrix are (up to proportionality
factors) equivalent.
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