The Defect Angle and the Relation to the Laplacian Matrix

Brandon Rafal Epstein

Mentor: Dr. Martin Roček

Finite Triangulation

- Tiling of any two-dimensional surface with triangles
- Pillow triangulation of a sphere

Finite Triangulation

- Approximation of smooth surface improves as number of triangles increases

Source: http://ieeexplore.ieee.org/ieee_pilot/articles/05/ttg2009050719/assets/img/article_1/fig_3/large.gif

Defect Angle $\left(\epsilon_{i}\right)$

- A measure of the angle "missing" from a vertex of the triangulation

$$
\epsilon_{i}=2 \pi-\sum_{(j, k) \mid(i, j, k) \in F}\left(\alpha_{j i k}\right)
$$

Defect Angle

Demonstration of angular deficit and surplus

Source: http://royalsocietypublishing.org/content/ro yprsa/469/2153/20120631/F1.large.jpg

Defect Angle

Defect angles in a regular tetrahedron. The defect angle at each vertex is π because there are 3 angles measuring $\frac{\pi}{3}$.

- A function on a finite triangulation, determined by A. Ko and M. Roček, equal to:

$$
\Gamma=\frac{1}{12 \pi}\left[\sum_{\langle i j k}\left(\int_{\frac{\pi}{2}}^{\alpha_{i j k}}\left(y-\frac{\pi}{3}\right) \cot y d y\right)+\sum_{\langle i j\rangle} 2 k_{i j} \pi \ln \left(\frac{\ell_{i j}}{\ell_{0}}\right)\right]
$$

- Constants $k_{i j}$ are defined such that

$$
\sum_{j \mid\langle i j\rangle \in E} k_{i j}=1-\frac{n_{i}}{6}
$$

where n_{i} is the number of vertices adjacent to i.

- Defined so that if we change each edge $\ell_{i j}$ at i by $\alpha_{i} \ell_{i j}$, then Γ will change proportionally to $\alpha_{i} \epsilon_{i}$.

Rescaling a vertex

The effect of rescaling $\langle 1,2\rangle$ on the triangulation. Only two of the six triangles are affected, showing the locality of the rescaling and Γ.

Phi Quantities $\left(\Phi_{i}\right)$

- Consider a triangulation where the edge lengths are given by

$$
\ell_{i j}=\ell_{i j}^{0} \Phi^{\Phi_{i}+\Phi_{j}}
$$

- We can rescale the triangulation's edge lengths by adding constants to Φ_{i} and Φ_{j}.
- $\frac{\partial \Gamma}{\partial \Phi_{i}}$ is proportional to ϵ_{i}.

Project objective

- The principal problem we are investigating:
- What relations can we find between the properties of discrete triangulations and those of smooth surfaces?
- An interesting question we explored in passing:
- What is the Taylor series of Γ, and what information about a triangulation is conveyed in its coefficients?

Methodology and Procedure

- Methodology
- Multivariate calculus
- Procedure
- Second-order Taylor series with respect to the Φ values
- Laplace operator and Laplace matrix

Laplace operator $\left(\nabla^{2}\right)$

- The energy functional is given by an integral involving the Laplace operator $\nabla^{2} \Psi$ on an arbitrary function Ψ :

$$
-\iint_{D} \Psi \nabla^{2} \Psi d x d y
$$

- Integrating by parts we can rewrite this as:

$$
\iint_{D}(\nabla \Psi \cdot \nabla \Psi) d x d y
$$

Laplacian matrix (L)

- Discrete analogue of the Laplace operator
- Acts on a matrix Φ by matrix multiplication $(L \cdot \Phi)$
- Xianfeng Gu et al. define a modified Laplace matrix:

$$
L_{i j}=\left\{\begin{array}{ll}
-w_{i j} & \text { if } i \neq j \\
\sum_{k} w_{i k} & \text { if } i=j
\end{array}, w_{i j}= \begin{cases}\frac{\cot \alpha_{i j i}}{2} & \text { if }\left[v_{i}, v_{j}\right] \in \partial M \\
\sum_{k \mid(i, k) \in F} \frac{\cot \alpha_{i j j}}{2} & \text { if }\left[v_{i}, v_{j}\right] \notin \partial M\end{cases}\right.
$$

- The $w_{i j}$ terms are named cotangent edge weights.

Cotangent edge weights

Interior edge $\langle i j\rangle$ has

$$
\begin{array}{r}
w_{i j}=\frac{1}{2}\left(\cot \alpha_{i k_{1} j}+\cot \alpha_{i k_{2}}\right) \\
\text { so } L_{i j}=-\frac{1}{2}\left(\cot \alpha_{i k_{1} j}+\cot \alpha_{i k_{2} j}\right)
\end{array}
$$

Boundary edge $\left\langle j k_{1}\right\rangle$ has

$$
w_{j k_{1}}=\frac{1}{2} \cot \alpha_{j i k_{1}}
$$

so $L_{j k_{1}}=-\frac{1}{2} \cot \alpha_{j i k_{1}}$

$$
\begin{aligned}
& L_{k_{1} k_{1}}=w_{i k_{1}}+w_{j k_{1}} \\
& =\frac{1}{2}\left(\cot \alpha_{j i k_{1}}+\cot \alpha_{i j k_{1}}\right)
\end{aligned}
$$

As k_{1} and k_{2} are not adjacent, $L_{k_{1} k_{2}}=0$.

Calculation of the Taylor series

- We need to compute the first and second derivatives of Γ with respect to the Φ quantities.
- By construction, the first derivative of Γ with respect to Φ_{i} is:

$$
\frac{\partial \Gamma}{\partial \Phi_{i}}=\epsilon_{i}
$$

Calculation of the Taylor series

- There are two cases of second derivatives of Γ with respect to Φ :
- "On-diagonal": the second derivatives of the form

$$
\frac{\partial^{2} \Gamma}{\partial \Phi_{i}^{2}}
$$

- "Off-diagonal": the second derivatives of the form

$$
\frac{\partial^{2} \Gamma}{\partial \Phi_{i} \cdot \partial \Phi_{j}}
$$

- We use the defect angle to compute these derivatives.

Calculation of the Taylor series

- We start by differentiating an angle of a triangle, $\alpha_{j i k}$.
- We use the Law of Cosines:

$$
\cos \alpha_{j i k}=\frac{\ell_{i j}^{2} e^{2 \Phi_{i}+2 \Phi_{j}}+\ell_{i k}^{2} e^{2 \Phi_{i}+2 \Phi_{j}}-\ell_{j k}^{2} e^{2 \Phi_{j}+2 \Phi_{k}}}{2 \ell_{i j} e^{\Phi_{i}+\Phi_{j}} \ell_{i k} e^{\Phi_{i}+\Phi_{k}}}
$$

- By differentiating both sides with respect to a Φ value, we can isolate the derivative of the angle.

Calculation of the Taylor series

- To recapitulate, we have the following derivatives:

$$
\begin{gathered}
\frac{\partial \Gamma}{\partial \Phi_{i}}=\epsilon_{i} \\
\frac{\partial^{2} \Gamma}{\partial \Phi_{i}^{2}}=-\sum_{i \mid(i, j, k) \in F} \cot \alpha_{i k j}+\cot \alpha_{i j k} \\
\frac{\partial^{2} \Gamma}{\partial \Phi_{i} \cdot \partial \Phi_{j}}=-\sum_{i, j \mid(i, j, k) \in F} \cot \alpha_{i k j}
\end{gathered}
$$

- Substituting these into the general formula of a multivariable Taylor series, we finish the derivation.

Taylor series

- The Taylor series of Γ to the second order is calculated to be:

$$
\begin{gathered}
\Gamma=\Gamma_{0}+\frac{1}{12 \pi}\left(\sum_{i \in V}\left(\epsilon_{i} \Phi_{i}\right)\right. \\
+\sum_{i \in V}\left(\sum_{j, k \mid(i, j, k) \in F}\left(\frac{\cot \alpha_{i j k}+\cot \alpha_{i k j}}{2}\right) \Phi_{i}^{2}\right) \\
\left.+\sum_{\langle i j\rangle \in E}\left(\sum_{k \mid(i, j, k) \in F}\left(-\cot \alpha_{i k j}\right) \Phi_{i} \Phi_{j}\right)\right)
\end{gathered}
$$

- This series had not been calculated previously.

Laplace operator

- M. Roček and R. M. Williams calculated the previous integral

$$
\iint_{D}(\nabla \Phi \cdot \nabla \Phi) d x d y
$$

- They determined that this is equal to:

$$
\begin{gathered}
\frac{1}{2}\left(\left(\frac{\cot \alpha_{2}+\cot \alpha_{3}}{2}\right) \Phi_{1}^{2}+\left(\frac{\cot \alpha_{1}+\cot \alpha_{3}}{2}\right) \Phi_{2}^{2}\right. \\
+\left(\frac{\cot \alpha_{1}+\cot \alpha_{2}}{2}\right) \Phi_{3}^{2}
\end{gathered}
$$

$\left.+\left(-\cot \alpha_{3}\right) \Phi_{1} \Phi_{2}+\left(-\cot \alpha_{2}\right) \Phi_{1} \Phi_{3}+\left(-\cot \alpha_{1}\right) \Phi_{2} \Phi_{3}\right)$
which is proportional to the second-order terms of the Taylor series of Γ for a pillow triangulation by a factor of 6π.

- The three quantities we have discussed are all equal!
- The coefficients of second-order terms of the Taylor series of Γ
- The entries of the Laplace matrix
- The coefficients of the expansion of the energy functional
- In general, further research topics are those which discretize other continuous concepts.
- Cauchy-Riemann Equation - useful tool in the continuous case; holomorphic criteria for complex functions. Holomorphic functions give solutions to the Liouville equation.
- Liouville theory-concerns solutions to the Liouville equation in the continuous case.

Conclusion

- We determine the Taylor series expansion of Γ with respect to Φ quantities.
- We verify that the Taylor series expansion, the gradient integral, and the Laplace matrix are (up to proportionality factors) equivalent.

Acknowledgements

I wish to thank:

- Dr. Martin Roček, my mentor
- Dr. Tanya Khovanova
- The PRIMES program, Prof. Pavel Etingof, and Dr. Slava Gerovitch
- Anton Wu
- Dr. Michael Lake and Mrs. Maria Archdeacon
- My mother, father, and grandmother
- [1]Ashcroft, N. and Mermin, N. D. Solid-State Physics. Cengage Learning, Inc. January 1976. ISBN 0-03-083993-9.
- [2] Dubrovin, B. A., Novikov, S. P., and Fomenko, A. T. Modern Geometry: Methods and Applications: Part I: The Geometry of Surfaces, Transformation Groups, and Fields, Graduate Studies in Mathematics 93 (1992) (2nd ed.), Berlin-Heidelberg-New York: Springer-Verlag, pages xv+468.
- [3] Greene, Brian. The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory, Random House, Inc. February 2000. ISBN 0-375-70811-1.
- [4] Gu, Xianfeng D. et al. Discrete Laplace-Beltrami Operator Determines Discrete Riemannian Metric.
- [5] Kac, Mark. Can One Hear the Shape of a Drum?. American Mathematical Monthly 73 (4, Part II): pages 1-23. April 1966.
- [6] Ko, A. and Rocek, M. A Gravitational Effective Action on a Finite Triangulation. JHEP 0603, 021 (2006) [arXiv:hep-th/0512293].
- [7] Marsden, J. E. and Hoffman, M. J. Basic Complex Analysis. Freeman, New York, 1998.
- [8] Regge, T. General Relativity without Coordinates. Nuovo Cim. 19 (1961) (3): 558-571. doi:10.1007/BF02733251.
- [9] Rocek, M. and Williams, R. M., unpublished.
- [10] Sullivan, John M. Curvatures of Smooth and Discrete Surfaces. Discrete Differential Geometry, Bobenko A., et al. (eds.): pages 175-188. Birkhauser, Basel, 2008.

